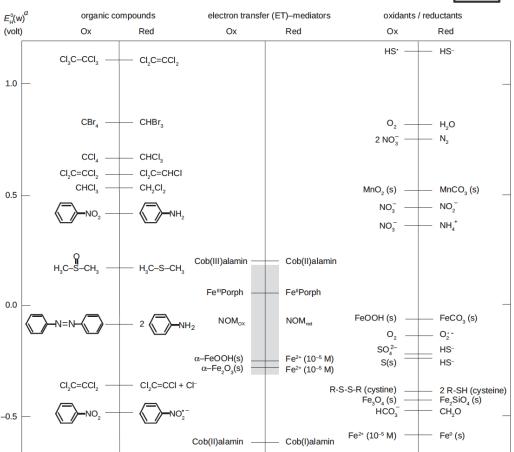
Exercise 1: Reduction potentials



- 1. Can NOM_{red} react with O_2 to form NOM_{ox} and H_2O ? Yes.
- 2. Can NOM_{red} react with SO_4^{2-} to form NOM_{ox} and HS^- ? No.

Remember: $\Delta G = -n F \Delta E$

- ∆G > 0: reaction not feasible
- ΔG < 0: reaction is feasible (but may be kinetically limited)

Figure 23.3 in Environmental Organic Chemistry, by Schwarzenbach, Gschwend, Imboden (Edition 3, Wiley).

Exercise 2: Nitrogen redox reactions

Determine the pe-pH relationship for the two equations below. The final equations should be in the form of pe = x + ypH.

Redox couple	Reaction	log(K)
N(5) / N(3)	$NO_2^- + H_2O = NO_3^- + 2H^+ + 2e^-$	-28.57
N(5) / N(0)	$N_2 + 6H_2O = 2 NO_3^- + 12H^+ + 10e^-$	-207.08

Exercise 2: Solution

For each N redox reaction, the law of mass action gives the pe-pH relationship. So, for the first reaction

$$NO_2^- + H_2O = NO_3^- + 2H^+ + 2e^ log(K) = -28.57$$

$$log (K) = -28.57 = log([NO3-]) - 2pH - 2pe - log([NO2-])$$

i.e.,

pe =
$$14.285 + \frac{1}{2} \log([NO_3]) - \frac{1}{2} \log([NO_2]) - pH$$

Similarly, for the other equation:

$$N_2 + 6H_2O = 2NO_3^- + 12H^+ + 10e^- log(K) = -207.08$$

 $P_2 = 20.708 - 6/5pH + 1/5 log([NO_3^-]) - 1/10log([P_{N2}])$

Exercise 3: Interpreting pe-pH relationships

We now have the following relationships:

pe =
$$14.285 + \frac{1}{2} \log([NO_3]) - \frac{1}{2} \log([NO_2]) - pH$$

N(5)/N(0)

$$pe = 20.708 - 6/5pH + 1/5log([NO3-]) - 1/10log([PN2])$$

N(0)/N(-3)

$$pe = 5.179 - 1/3log([NH4+]) - 4/3pH + 1/6log([PN2])$$

NH₄+/NH₃ dissociation

$$pH = 9.252 - log([NH4+]) + log([NH3])$$

When plotted on a pe-pH diagram, how will these relationships look? Assume that all N species have unit activities.

Exercise 3: Solution

eret Aeppli

pe =
$$14.285 + \frac{1}{2} \log([NO_3]) - \frac{1}{2} \log([NO_2]) - pH$$

N(5)/N(0)

$$pe = 20.708 - 6/5pH + 1/5log([NO3-]) - 1/10log([PN2])$$

N(0)/N(-3)

pe =
$$5.179 - 1/3\log([NH_4^+]) - 4/3pH + 1/6\log([P_{N2}])$$

NH₄+/NH₃ dissociation

$$pH = 9.252 - log([NH4+]) + log([NH3])$$

pe varies with pH

pe varies with pH

pe varies with pH

Vertical line on pepH diagram

If all N species have unit activities, they disappear from the above equations. Then it is easily seen that the N(5)/N(0) line occurs at high pe, with the N(0)/N(-3) line below it. The pH line is vertical at the value 9.252. NH_4^+ lies to the left of this line and NH_3 to the right.

Assuming that the leachate contains mostly biodegradable organic carbon (we neglect contaminants here), calculate how much biodegradable organic carbon (DOC) can be in the water without formation of anaerobic zones. Assume that the initial water is in equilibrium with atmospheric O₂ concentrations.

Useful information:

- The solubility of O_2 in water can be calculated using $[O_2] = K_H pO_2$ where $K_H (25 °C) = 1.3 * 10^{-3} M atm^{-1}$
- Use the chemical formula CH₂O for DOC

Solubility of oxygen in water (at 25 °C):

$$[O_2] = K_H pO_2$$

 $K_H (25 \, ^{\circ}C) = 1.3 \, ^{*} \, 10^{-3} \, M \, atm^{-1}$
 $pO_2 = 0.2 \, atm \, (since the atmosphere is 21% \, O_2)$
Thus, $[O_2] = 2.6 \, ^{*} \, 10^{-4} \, M = 0.26 \, mmol \, L^{-1}$

Consumption of oxygen by aerobic respiration:

 $O_2 + CH_2O = CO_2$ (aq) + H_2O (assuming an average oxidation state of C in DOC of 0)

Max 0.26 mmol L⁻¹ CH₂O can be oxidized using the O₂ available. This corresponds to around 3 mg L⁻¹ DOC (as carbon) (using M_w C = 12 g mol⁻¹)

After oxygen is used up, which electron acceptors will be used next?

For nitrate (eq. 2), Mn oxide (eq. 3), Fe oxide (eq. 6), carbon dioxide (eq. 8b), and sulfate (eq. 9), calculate the Δ E_H⁰(W) value using the following table. Use the following reaction for organic carbon:

$$CO_2 + 4e^- + 4H^+ = CH_2O + H_2O$$

$$E_{H}^{0}(W) = -0.43 V$$

Half-reaction				
Oxidized Species	Reduced Species	$E_{\rm H}^{0}$ (V)	$E_{\mathrm{H}}^{0}\left(\mathbf{W}\right)$ $\left(\mathbf{V}\right)$	$\Delta_{\rm r}G^0({\rm W})/n^c$ (kJ mol-1)
(1a)	$O_2(g) + 4 H^+ + 4 e^- = 2 H_2O$	+1.23	+0.81	-78.3
(1b)	$O_2(aq) + 4 H^+ + 4 e^- = 2 H_2O$	+1.19	+0.77	-74.3
(2)	$2 \text{ NO}_3^- + 12 \text{ H}^+ + 10 \text{ e}^- = \text{N}_2(\text{g}) + 6 \text{ H}_2\text{O}$	+1.24	+0.74	-72.1
(3)	$MnO_2(s) + HCO_3^-(10^{-3}) + 3 H^+ + 2 e^- = MnCO_3(s) + 2 H_2O$		$+0.53^{b}$	-50.7^{b}
(4)	$NO_3^- + 2 H^+ + 2 e^- = NO_2^- + H_2O$	+0.85	+0.43	-41.6
(5)	$NO_3^2 + 10 \text{ H}^+ + 8 \text{ e}^- = NH_4^+ + 3 H_2O$	+0.88	+0.36	-35.0
(6)	$FeOOH(s) + HCO_3^- (10^{-3} \text{ M}) + 2 \text{ H}^+ + e^- = FeCO_3(s) + 2 \text{ H}_2O$		$-0.05^{\ b}$	+4.8 b
(7)	CH_3COCOO^- (pyruvate) + 2 H ⁺ + 2 e ⁻ = $CH_3CHOHCOO^-$ (lactate)		-0.19	+17.8
(8a)	$HCO_3^- + 9 H^+ + 8 e^- = CH_4(aq) + 3 H_2O$	+0.21	-0.20	+19.3
(8b)	$CO_2(g) + 8 H^+ + 8 e^- = CH_4(g) + 2 H_2O$	+0.17	-0.24	+23.6
(9)	$SO_4^{2-} + 9 H^+ + 8 e^- = HS^- + 4 H_2O$	+0.25	-0.22	+20.9

Example calculation for nitrate reduction coupled to organic carbon oxidation:

$$2NO_3^- + 12H^+ + 10e^- = N_2(g) + 6H_2O$$

$$E_{H}^{0}(W) = +0.74$$

$$CO_2 + 4e^- + 4H^+ = CH_2O + H_2O$$

$$E_{H}^{0}(W) = -0.43 V$$

For the combined reaction (CH₂O oxidation and NO₃⁻ reduction)

$$E_{H^0}(W)$$
 (overall) = $E_{H^0}(W)$ (eq. 1) + $E_{H^0}(W)$ (eq. 2) = 0.74 + (0.43) = 1.17 V

Note that we have to reverse the sign of $E_H^0(W)$ (eq. 2) because we are considering the reverse reaction.

As $E_H^0(W)$ (overall) > 0, the reaction is thermodynamically feasible

Analogous calculation for the other electron acceptors yields:

 $E_{H^0}(W)$ (overall) values of 0.96 V for Mn oxide, 0.38 V for Fe oxide, 0.19 V for carbon dioxide, and 0.21 V for sulfate.